
Chapter Five
Schneider’s Solution to Hilbert’s Seventh Problem

(and Beyond)
(Revised January 2, 2011)

In this lecture we will briefly examine Schneider’s solution to Hilbert’s Sev-
enth Problem and then look at two alternate, more modern, approaches to the
last part of this proof (wherein we obtain the nonzero algebraic number that
leads to the ultimate contradiction). We begin with Schneider’s construction
of the auxiliary function which requires an application of Siegel’s Lemma from
the last chapter. For clarity we restate the proposition implicit in Schneider’s
solution.

Proposition. Suppose α and β are algebraic numbers with α 6= 0, 1 and β
irrational. Further assume that αβ is algebraic and let d = [Q(α, β, αβ) : Q].

Let m be a positive integer and put D1 = [
√

2dm3/2] and D2 = [
√

2dm1/2]. Then
if m is sufficiently large there exist rational integers ck`, 0 ≤ k ≤ D1 − 1, 0 ≤
` ≤ D2 − 1, not all zero, such that the function

F (z) =

D1−1∑
k=0

D2−1∑
`=0

ck`z
kα`z (1)

satisfies
F (a+ bβ) = 0 for 1 ≤ a, b ≤ m. (2)

Moreover, there exists a constant c0 = c0(α, β) so that the integers |ck`| satisfy

0 < max |ck`| ≤ cm
2/3 logm

0 . (3)

Note: Siegel’s Lemma enabled Schneider to describe the function he de-
sired for his proof. That lemma does not explicitly yield the integral solutions
X1, . . . , XN , it only establishes that they exist and that they satisfy (3). How-
ever, Schneider would know that for any pairs of integers a and b

F (a+ bβ) =

D1−1∑
k=0

D2−1∑
`=0

ck`(a+ bβ)ke` logα(a+bβ)

=

D1−1∑
k=0

D2−1∑
`=0

ck`(a+ bβ)kαa`αβb`,

is an integral polynomial expression involving α, β, and αβ and so is an algebraic
number.

There is one small twist to applying Siegel’s Lemma to obtain the appropriate
function–the coefficients in Schneider’s system of equations are not rational
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integers, as are required by the lemma in order to obtain integral solutions,
but algebraic numbers. This does not present too great of an obstacle; we
simply represent each algebraic number in terms of a primitive element of a
field containing all of the algebraic numbers under consideration, and then set
each coefficient equal to zero.

Outline of the proof of this Proposition

Step 1. Translate the condition that F (a + bβ) = 0 for 1 ≤ a, b ≤ m into a
system of m2 linear equations with algebraic coefficients.

Step 2. Using a primitive element for the number field K = Q[α, β, αβ ] ,
translate the condition F (a + bβ) = 0 for 1 ≤ a, b ≤ m into a larger system of
equations with rational integral coefficients.

Step 3. Apply Siegel’s Lemma to obtain the appropriate function F (z).

Details of the proof.

Step 1. We begin by representing our desired function F (z) with indeterminant
coefficients ck` and unspecified degrees D1 and D2 :

F (z) =

D1−1∑
k=0

D2−1∑
`=0

ck`z
ke(logα)`z.

In order to translate the vanishing of F (z) at all of the desired points a+bβ into a
rather explicit homogeneous system of linear equations with integer coefficients
it helps to introduce informative notation for the coefficients of the system of
linear equations corresponding to the conditions

F (a+ bβ) = 0 for 1 ≤ a ≤ m, 1 ≤ b ≤ m .

Since

F (a+ bβ) =

D1−1∑
k=0

D2−1∑
`=0

ck`(a+ bβ)ke(` logα)(a+bβ)

=

D1−1∑
k=0

D2−1∑
`=0

(a+ bβ)k(α)`a(αβ)`b︸ ︷︷ ︸
coefficients

ck`︸︷︷︸
unknowns

= 0 ,

we see that for each choice of integers k, `, a, b we need to understand the alge-
braic number

(a+ bβ)ke(logα)`ae(β logα)`b = (a+ bα)k(α)`a(αβ)`b. (4)

Step 2. Let θ be a primitive element for the field K = Q(α, β, αβ), where d =
[K : Q], which is also an algebraic integer. Then there are rational polynomials
pα, pβ and pαβ so that

α = pα(θ), β = pβ(θ) and αβ = pαβ (θ).
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Then a typical term in the summand representing F (a+ bβ) may be rewritten
as:

(a+ bβ)ke(logα)`ae(β logα)`b = (a+ bpβ(θ))k(pα(θ))`a(pαβ (θ))`b,

We let δ = den(pα(θ))den(pβ(θ))den(pαβ (θ)). Then

δD1+2D2mF (a+ bβ)

may be rewritten to only involve algebraic integers. And although the above
expression will involve powers of θ greater than d − 1, each of these may be
rewritten as a linear combination of 1, θ, . . . , θd−1 with coefficients of predictable
absolute values. (See for example the exercises at the end of this chapter). In
particular a typical summand in δD1+2D2mF (a+ bβ) may be rewritten as,

δ(D1−k)+(D2m−`a)+(D2m−`b)(δ(a+ bpβ(θ)))k(δpα(θ))`a(δpαβ (θ))`b

= a1(k, `, a, b) + a2(k, `, a, b)θ + . . .+ ad(k, `, a, b)θ
d−1 (5)

where the integers a1, a2, . . . , ad satisfy

max
1≤r≤d

|ar(k, `, a, b)| ≤ cD1 logm+D2m
1 , (6)

c1, and the other constants c2, . . . below, depend only on α, β, and our choice
of θ, but not any of the parameters.

Thus pulling all our observations together, we see that for each pair of inte-
gers (a, b), we have

δD1+2D2mF (a+ bβ) = A1 +A2θ + · · ·+Adθ
d−1 ,

where each integer Aj = Aj(a, b) can be expressed as

Aj =

D1−1∑
k=0

D2−1∑
`=0

tj(k, `, a, b)ck` ,

and each coefficient tj(k, `, a, b) is an integer arising from a sum of D1D2 inte-
gers aj(k, `, a, b). Thus given our previous upper bounds, it follows that each
coefficient satisfies

|tj(k, `, a, b)| ≤ D1D2c
D1 logm+D2m
2 .

(We note for later use that in obtaining the above estimate we used the bounds
1 ≤ a, b ≤ m. We will later need to appeal to the more explicit upper bound:

|tj(k, `, a, b)| ≤ D1D2c
D1 log max{|a|,|b|}+D2 max{|a|,|b|}
2 ) .

Since the numbers 1, θ, θ2, . . . , θd−1 are Q-linearly independent, it follows
that δD1+2D2mF (a + bβ) = 0, so F (a + bβ) equals 0, if and only if each of
the associated quantities A1, A2, . . . , Ad equals 0. Therefore we can replace
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each single linear equation F (a+ bβ) = 0 involving algebraic coefficients with d
linear equations involving only integer coefficient. Namely,

A1(a, b) = 0 , A2(a, b) = 0 , . . . , Ad(a, b) = 0 .

Step 3. For each pair (a, b), if we set each of the associated linear forms
A1, A2, . . . , Ad equal to 0, then we obtain a homogeneous system of dm2 linear
equations in D1D2 unknowns. By Siegel’s Lemma, if

D1D2 > dm2 ,

then there exist integers ck`, not all zero, that form a solution to the linear
system

Aj(a, b) =

D1−1∑
k=0

D2−1∑
`=0

tj(k, `, a, b)ck` = 0 ,

for j = 1, 2, . . . , d, a = 1, . . . ,m, and b = 1, . . . ,m, such that for each m and n,

|ck`| <
(
(D1D2)2cD1 logm+D2m

2

) dm2

D1D2−dm2 .

In order to simplify this upper bound we can now fix a relationship between
the parameters D1, D2, and m. The natural thing to try is to balance the
two exponents in (6), i.e., take D1 logm equal to D2m. The inclusion of a
logarithmic term is necessary in many transcendence proofs, for example in
Gelfond’s solution to Hilbert’s seventh problem, but in Schneider’s somewhat
less delicate proof we can ignore the relatively slow-growing logm factor. We
choose D1 and D2 such that

D1D2 = 2dm2 and D1 = D2m .

If we imagine that m is our free parameter, we solve for D1 and D2 and obtain:

D1 =
√

2dm3/2 and D2 =
√

2dm1/2 ,

with the additional understanding that we will henceforth take m such that
these quantities are integers (i.e., take m always of the form m = 2dn2 where n
is an integer).

We note that indeed D1D2 = 2dm2 > dm2 as required in Siegel’s Lemma. So
applying Siegel’s Lemma we see that for m sufficiently large there exist integers
ck`, not all zero, satisfying

|ck`| < cm
3/2 logm

0 , (7)

so that if P (x, y) =
∑D1−1
k=0

∑D2−1
`=0 ck`x

ky`, and F (z) = P (z, elogαz), then
F (z) is a nonzero function with the property that for each a = 1, . . . ,m and
b = 1, . . . ,m,

F (a+ bβ) = 0 .
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This completes the proof of the proposition.

Once we have a function with prescribed zeros we need a nonzero value of
the function that leads to a nonzero algebraic integer whose norm is less than
1. This requires three things: a nonzero value of the function, an upper bound
for the absolute value of this nonzero value, and information about the nonzero
value’s conjugates. An important observation that will assist us in meeting all
of these requirements is that since β is irrational, we see that a+ bβ = a′ + b′β
if and only if a = a′ and b = b′. Therefore, by our construction, F (z) has at
least m2 distinct zeros, namely, at z = a+ bβ, for 1 ≤ a ≤ m and 1 ≤ b ≤ m.

The conclusion of the proof.

Before we discuss how to find a nonzero value for the function F (z) let’s
examine how such a nonzero value leads to a completion of the proof. We will
return to guarantee the existence of an appropriate nonzero value in the next
section.

Using algebraic conjugates. Using a fairly complicated determinant argument,
see below, Schneider proved that there exists a pair of integers a∗, b∗, with
1 ≤ a∗, b∗ < 4m so that F (a∗ + b∗β) 6= 0. In this section we use the algebraic
norm to obtain a nonzero integer from the nonzero algebraic number F (a∗+b∗β)
whose absolute value is less than 1. Although we have already seen such an
argument in some detail we will give fairly complete details here. However
we will not explicitly display the dependence on α, β, or αβ , and consequently
on θ and d, in our estimates. Rather we continue to absorb these explicit
dependencies into consecutively numbered constants c1, c2, . . . .

We begin by letting m∗ = min{a∗, b∗}, with the property that

F (a+ bβ) = 0 for 1 ≤ a, b < m∗ and F (a∗ + b∗β) 6= 0.

As we will see in the next section Schneider showed that m ≤ m∗ < 4m.
Recalling our earlier notation if we recompute the estimates required to

apply Siegel’s Lemma using the specific numbers a∗ and b∗, which give rise to a
nonzero value for the function F (z), instead of with general a and b satisfying
1 ≤ a, b ≤ m we have

δD1+2D2m
∗
F (a∗ + b∗β) = A∗1 +A∗2θ + · · ·+A∗dθ

d−1,

where the integers A∗j = A∗j (a
∗, b∗) satisfy

max
1≤j≤d

{|A∗j |} ≤ D1D2δ
D1+2D2m

∗
max{|ck`|}max{|tj(k, `, a∗, b∗)|}

≤ D1D2c
D1+D2m

∗

3 cm
3/2 logm

4 cD1 logm∗+D2m
∗

5

≤ cm
3/2 logm

6 , since m∗ ≤ 4m.
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We let θ1 = θ, θ2, . . . , θd denote the conjugates of θ and, simplifying notation
a bit, consider the product

N =
(
A∗1 +A∗2θ + · · ·+A∗dθ

d−1
)︸ ︷︷ ︸

primary factor

d∏
i=2

(
A∗1 +A∗2θi +A∗3θ

2
i + · · ·+A∗dθ

d−1
i

)
︸ ︷︷ ︸

secondary factors

.

This product is a nonzero rational integer since δD1+2D2mF (a∗ + b∗β) is a
nonzero algebraic integer, i.e., N 6= 0.

Since the argument leading to an upper bound for |N | is so similar to the
argument we used to conclude Gelfond’s proof we will be brief. We estimate the
absolute value of the primary factor through an application of the Maximum
Modulus Principle; this estimate depends in a crucial way on the number of
zeros of the function F (z). The absolute value of each of the secondary factors
is estimated through a simple application of the triangle inequality (given the
above estimate for max

1≤j≤d
{|A∗j |}, above).

Estimating the primary factor. To estimate the primary factor A∗1 + A∗2θ +
A∗3θ

2 + · · ·+A∗dθ
d−1 we apply the Maximum Modulus Principle to the function

G(z) =
δD1+2D2m

∗
F (z)∏m−1

a=1

∏m−1
b=1 (z − (a+ bβ))

.

G(z) is an entire function and

|δD1+2D2m
∗
F (a∗ + b∗β)| = |G(a∗ + b∗β)|

m−1∏
a=1

m−1∏
b=1

|(a∗ − a) + (b∗ − b)β| .

Given that a ≤ m and b ≤ m, we have that for any R > m∗(1+ |β|), |a∗+b∗β| <
R, so the Maximum Modulus Principle implies that

|δ∗F (a∗ + b∗β)| ≤ |G|R
m−1∏
a=1

m−1∏
b=1

|(a∗ − a) + (b∗ − b)β|

≤ |δD1+2D2m
∗
F |R∣∣∣∏m−1

a=1

∏m−1
b=1 (z − (a+ bβ))

∣∣∣
R

m−1∏
a=1

m−1∏
b=1

|(a∗ − a) + (b∗ − b)β| .

It is easiest to estimate each of the factors in the right-hand side of the
above equality separately. We bound the first factor, |δD1+2D2m

∗
F |R, through

an application of the triangle inequality:

|δD1+2D2m
∗
F |R =

∣∣∣∣∣δD1+2D2m
∗
D1−1∑
k=0

D2−1∑
`=0

ck`z
k
(
elogαz

)`∣∣∣∣∣
R

≤ δD1+2D2m
∗
D1D2 max{|ck`|}|z|D1

R

∣∣elogαz
∣∣D2

R

≤ δD1+2D2m
∗
D1D2c

m3/2 logm
2 RD1

(
e|Re(logα)|R

)D2

.
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In view of our choices of D1 and D2 and the fact that R > m∗ > m, we see that
the previous inequality implies

|δD1+2D2m
∗
F |R < cm

3/2 logR+m1/2R
7 .

The second factor in the above equation satisfies

m−1∏
a=1

m−1∏
b=1

|(a∗ − a) + (b∗ − b)β| ≤
(
m∗(1 + |β|)

)m2

.

And, fixing R = (4m)3/2 and taking m, and therefore m∗, so large that R >
m∗(1 + |β|), it is straightforward to produce a lower bound for the denominator
in the above equation: For z = R∣∣∣∣∣
m−1∏
a=1

m−1∏
b=1

(z − (a+ bβ))

∣∣∣∣∣
R

≥

∣∣∣∣∣
m−1∏
a=1

m−1∏
b=1

(R− (a+ bβ))

∣∣∣∣∣ ≥ (R−m∗(1 + |β|)
)m2

.

We conclude that∏m−1
a=1

∏m−1
b=1 |(a∗ − a) + (b∗ − b)β|∣∣∣∏m−1

a=1

∏m−1
b=1 (z − (a+ bβ))

∣∣∣
R

≤
(

m∗(1 + |β|)
R−m∗(1 + |β|)

)m2

≤ c
−3/2(m∗)2 log(m∗)+m2 log(m∗(1+|β|)
8

< c
−1/2m2 logm
9 .

Estimating the secondary factors. As we indicated above, we estimate the
secondary factors in N , the factors that involve one of the conjugates θi for
i = 2, 3, . . . , d, through the triangle inequality:

|A∗1 +A∗2θi + · · ·+A∗dθ
d−1
i | ≤ d max

1≤j≤d
{|A∗j |}max{1, |θi|}d−1

≤ dc(m
∗)3/2 logm∗

6 max{1, |θ1|, |θ2|, . . . , |θd|}d−1 ≤ c(m
∗)3/2 logm∗

10 ;

Therefore

d∏
j=2

∣∣∣A∗1 +A∗2θi +A∗3θ
2
i + · · ·+A∗dθ

d−1
i

∣∣∣
≤
(
c
(m∗)3/2 logm∗

10

)d−1

=
(
cd−1
10

)(m∗)3/2 logm∗

≤ cm
3/2 logm

11 .

Therefore we are lead to the estimate for |N |:

|N | < cm
3/2 logm

11 c
−1/2m2 logm
9 ≤ c−1/2m2 logm

12 < 1,

for m sufficiently large, which completes our proof.
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How to obtain the nonzero value.

There are several ways to find an appropriate nonzero algebraic number. For
historical accuracy we first consider Schneider’s fairly complicated approach to
this problem first.

Schneider’s original method. To obtain his nonzero algebraic number Schneider
considers several functions associated with the function F (z). We will see that
his reason for doing this is to find enough functions that, if they all vanish at
the points under consideration, a certain Vandermonde matrix will vanish. We
will see that this argument depends on an additional assumption about the al-
gebraic nature of α. Specifically, Schneider points out that he may assume that
α is not a root of unity. Indeed, if it is, then instead of considering the num-
bers α, β, and αβ at the very beginning of the proof one considers the numbers
αβ , β−1, and α.

For notational simplicity in the argument below we retain the notation D1 =√
2dm3/2 and D2 =

√
2dm1/2. Using this notation Schneider defined his

associated functions as follows: for each σ, 1 ≤ σ ≤ D2, let

Fσ(z) =

 ∏
1≤a≤σ−1,1≤b≤m

(z − (a+ bβ))

F (z + σ − 1).

Notice that each Fσ(z) vanishes at the prescribed zeros of F (z), a + bβ, 1 ≤
a, b ≤ m.

In order to understand the matrix Schneider introduces it it helpful to first
rewrite the original auxiliary function as:

F (z) = P11(z) + P12(z)αz + P13(z)α2z + · · ·+ P1D2
(z)α(D2−1)z.

It is then an easy calculation to rewrite each of the function Fσ(z), 1 ≤ σ ≤ D2,
in terms of polynomials P12, . . . , P1D2

which may be easily described in terms
of the polynomials P1τ (z), above. Specifically, if for each pair σ, τ we put

Pστ (z) =
∏

1≤a≤σ−1,1≤b≤m

(z − (a+ bβ))P1τ (z − σ − 1),

then we have

Fσ(z) =

D2∑
τ=1

α(σ−1)(τ−1)Pστ (z)α(τ−1)z.

We note that the vanishing of all of these functions at the indicated points
translates into have a certain matrix product equalling zero. Specifically for
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each z
P11(z) P12(z) · · · P1D2

(z)
P21(z) αP22(z) · · · αD2−1P2D2(z)
P31(z) α2P22(z) · · · α2(D2−1)P3D2

(z)
...

...
...

...
PD21(z) αD2−1PD22(z) · · · α(D2−1)(D2−1)PD2D2

(z)

×


1
αz

α2z

...
α(D2−1)z

 = ~0.

By our application of Siegel’s Lemma not all of the polynomials in the first
row of the matrix are identically zero; we denote the nonzero polynomials in the
first row by P1τ1(z), . . . , P1τr (z) and consider the r × r matrix:


P1τ1(z) P1τ2(z) · · · P1τr (z)

α(τ1−1)P2τ1(z) α(τ2−1)P2τ2(z) · · · α(τr−1)P2τr (z)
α2(τ1−1)P3τ1(z) α2(τ2−1)P3τ2(z) · · · α2(τr−1)P3τr (z)

...
...

...
...

α(r−1)(τ1−1)Prτ1(z) α(r−1)(τ2−1)Prτ2(z) · · · α(r−1)(τr−1)Prτr (z)


Following Schneider we temporarily let

Πσ(z) =
∏

1≤a≤σ−1,1≤b≤m

(z − (a+ bβ))

so we have
Pστ (z) = Πσ(z)P1τ (z − σ − 1),

Thus the above matrix may be represented by the product:
P1τ1(z) P1τ2(z) · · · P1τr (z)

Π2(z)P1τ1(z − 1) Π2(z)P1τ2(z − 1) · · · Π2(z)P1τr (z − 1)
Π3(z)P1τ1(z − 2) Π3(z)P1τ2(z − 2) · · · Π2(z)P1τr (z − 2)

...
...

...
...

Πr(z)P1τ1(z − r + 1) Πr(z)P1τ2(z − r + 1) · · · Πr(z)P1τr (z − r + 1)



×


1 ατ1−1 · · · α(r−1)(τ1−1)

1 ατ2−1 · · · α(r−1)(τ2−1)

...
...

...
...

1 ατr−1 · · · α(r−1)(τr−1)


We denote the second matrix above by W and note that its determinant is
Vandermonde. Then if we let ajx

gj denote the leading coefficient of P1τj (z) the
determinant of the above product may be written as

D(z)

=
(
Π1(z) · · ·Πk(z)

)(
a1 · · · arzg1+···+gr × |W |+ lower degree terms × |W |

)
.
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If D(z) vanishes identically then the coefficient of each power of z must equal
zero. But the leading coefficient of D(z) equals zero only if |W | = 0, which
would imply that α is a root of unity, contrary to our earlier assumption.

Schneider next shows that the function D(z) is a polynomial in z, with
coefficients involving powers of α; the degree of D(z) may be shown to be
less than 12m2. Thus there exists a pair a∗ + b∗β, 1 ≤ a∗, b∗ < 4m so that
D(a∗ + b∗β) 6= 0. This means that none of the rows of the above matrix can
vanish at a∗+b∗β and, looking at the first row, we deduce that F (a∗+b∗β) 6= 0.

Alternate ways to obtain the nonzero value. We saw above that Schneider
used a subtle argument, based on the nonvanishing of a Vandermonde deter-
minant, to obtain a point a∗ + b∗β which produced a nonzero algebraic num-
ber F (a∗ + b∗β) that eventually lead to a positive integer less than 1. It is
obvious that obtaining such a nonzero algebraic number was central to both
Gelfond’s and Schneider’s methods. Perhaps not unexpectedly, finding alter-
nate approaches to finding a nonzero value for large classes of analytic functions
became an important area of research in transcendental number theory in the
second half of the twentieth century. We conclude this chapter with two other
approaches to obtaining the all-important nonzero value for an exponential func-
tion.

Using the growth of the function to find a nonzero value. The first approach
is based on considering the following question: How many zeros can a nonzero
entire function have in a sequence of increasing large discs? The motivation for
this question is based on the following observation, which we will quantify: If an
entire function has “too many” zeros in an increasing sequence of discs, then the
function must be identically zero. The quantitative version of this qualitative
observation is given below. We first make an important definition.

Given a function F (z) and a positive real number R, we define the set

Z(F,R) = {z ∈ C : F (z) = 0, with |z| ≤ R } ,

with the understanding that if z0 ∈ Z(F,R) is a zero of F (z) with multiplicitym,
then z0 appears m times in the set Z(F,R). Finally, we denote the cardinality
of the set Z(F,R) by card(Z(F,R)).

Theorem (Order of growth and zeros). Let F (z) be an entire function and
suppose that there exists a real number κ such that for all sufficiently large R,

max
|z|≤R

{|F (z)|} = |F |R ≤ eR
κ

.

If there exists an ε > 0 and an unbounded sequence of real numbers R1, R2, . . .
such that

Rκ+ε
n < card(Z(F,Rn)) ,

for all n = 1, 2, . . ., then f(z) is the identically zero function.
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Proof . Given any z0 ∈ C, there exists an integer n0 such that for all n ≥ n0,
we have |z0| < Rn. For each n ≥ n0, we define

Gn(z) =
F (z)∏

ω∈Z(F,Rn)(z − ω)
.

Thus, given that the zeros in Z(F,Rn) appear with the appropriate multiplicity,
we see that Gn(z) is an entire function. Hence by the Maximum Modulus
Principle, and our hypotheses, we conclude that for all sufficiently large Rn,

|F (z0)| ≤ |Gn|5Rn
∏

ω∈Z(F,Rn)

|z0 − ω|

=
|F |5Rn∣∣∣∏ω∈Z(F,Rn)(z − ω)

∣∣∣
5Rn

∏
ω∈Z(F,Rn)

|z0 − ω|

≤ e(5Rn)κ

(4Rn)card(Z(F,Rn))
(2Rn)card(Z(F,Rn))

≤ e(5Rn)κ
(

1

2

)card(Z(F,Rn))

< e(5Rn)κ
(

1

2

)Rκ+εn

= e(5Rn)κe−(log 2)Rκ+εn

= e(5κ−(log 2)Rεn)Rκn .

Since for all sufficiently large n, we have 5κ < (log 2)Rεn, we conclude that if
we let n → ∞, then |F (z0)| = 0, and hence F (z0) = 0 for all z0 ∈ C, which
establishes our result.

Let’s see how the above theorem can be applied to simplify Schneider’s
conclusion. In order to estimate the number of zeros of the function F (z) in the
Main Proposition,

F (z) = P (z, elogαz) =

D1−1∑
k=0

D2−1∑
`=0

ck`z
ke` logαz

we need to find a value for the exponent κ that fulfills the hypothesis of the
above theorem.

Claim. For any choice of κ > 1 for all sufficiently large R,

|F |R ≤ eR
κ

.
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In order to establish this claim we note that it follows from the Maximum
Modulus Principle and the triangle inequality that

|F |R = max
|ζ|=R

{D1D2 max{|ck`||}|ζ|D1eD2| logα||ζ|}

≤ D1D2 max{|ck`||}RD1eD2| logα|R

≤ eR
κ

for any κ > 1,

where these last inequalities follow since if we take R sufficiently large, since the
quantities D1, D2, and max{|ck`||} do not depend on R. This establishes the
claim.

Thus, since we have already established that F (z) is not identically zero
(since the functions z and elogαz are algebraically independent and the coeffi-
cients ck` are not all equal to 0), we see that for any choice of ε > 0, for all
sufficiently large R, F (z) cannot have more than Rκ+ε zeros in Z(F,R).

More concretely, taking κ = 5
4 and ε = 1

4 , we see that for all sufficiently large
R,

card(Z(F,R)) ≤ R3/2 .

Conclusion. Using the above estimate for card(Z(F,R)) for sufficiently large R,
it is possible to deduce that there exists an integer M ≥ m such that

F (a+ bβ) = 0 for all 1 ≤ a < M and 1 ≤ b < M ,

while there exists a pair a∗, b∗ with 1 ≤ a∗ ≤ M, 1 ≤ b∗ ≤ M , such that
F (a∗ + b∗β) 6= 0. (Hint: Assume that F (a + bβ) = 0 for all positive integers
a and b. Now show that for all sufficiently large R, a lower bound for the
number of complex numbers of the form z = a+ bβ, where a and b are positive
integers, that satisfy |z| ≤ R is proportional to the area of the disk of radius R.
Conclude that this assumption implies that F (z) is identically zero, which is a
contradiction.)

A More Modern Approach to Obtaining a Nonzero Value: A Zeros Estimate
This approach is based on providing a count of the total number of zeros

a so-called exponential polynomial can have. What is surprising about this
approach is that, at least in the real case, the proof requires no ideas beyond
basic calculus. (This proposition, due to Polya, was used by Gelfond in 1962
when he provided a simpler proof of his theorem in case both α and β are real.)

Proposition. Let P1(z), P2(z), . . . , Pk(z) be polynomials with real coefficients
and degrees d1, d2, . . . , dk, respectively. Suppose ω1, ω2, . . . , ωk are distinct real
numbers. Then the function

F (z) = P1(z)eω1z + P2(z)eω2z + · · ·+ Pk(z)eωkz

12



has at most
d1 + d2 + · · ·+ dk + k − 1

real zeros.

Proof. We note for later use that, after multiplying F (z) by e−ωkz we may
assume that ωk = 0.

The proof is by induction on n = d1 + d2 + · · ·+ dk + k. If n = 1 then k = 1
and d1 = 0. Thus F (z) = a1e

ω1z = a1, by our simplifying assumption above.
Since a1 6= 0 F (z) has no zeros.

We now take m ≥ 2, assume the result has been established for all functions
with n = d1 + d2 + · · ·+ dk + k < m, and let F (z) be a function as above with
d1 + d2 + · · ·+ dk + k = m. Let N denote the number of real zeros of F (z). The
trick is to apply Rolle’s Theorem, by which we know that the number of zeros
of

F ′(z) = ω1P1(z)eω1z + P ′1(z)eω1z + ω2P2(z)eω2z + P ′2(z)eω2z + · · ·+ P ′k(z)

= (ω1P1(z) + P ′1(z)) eω1z + (ω2P2(z) + P ′2(z)) eω2z + · · ·+ P ′k(z),

is at least N − 1.
Notice that in the above representation of F ′(z) we have for j = 1, . . . , k −

1,deg(ωjP1(z) + P ′j(z)) ≤ dj . However the degree of the coefficient of the term

e0 is one less than the degree of the coefficient of e0 in F (z). Therefore we may
apply the induction hypothesis to conclude that

N − 1 ≤ d1 + d2 + · · ·+ dk + k − 2,

from which the proposition follows.

Exercises.
1. For an arbitrary algebraic number α of degree deg(α) = d, let

P (x) = cdx
d + cd−1x

d−1 + · · ·+ c0 ∈ Z[x]

denote the minimal polynomial for α; thus gcd(c0, c1, . . . , cd) = 1. We define
the height of α, denoted by H(α), to be the height of its minimal polynomial.
That is,

H(α) = H(P ) = max{|c0|, |c1|, . . . , |cd|} .

Then there exist rational numbers c0,n, c1,n, . . . , cd−1,n such that

αn = c0,n + c1,nα+ c2,nα
2 + · · ·+ cd−1,nα

d−1 .

Moreover,
max

0≤j≤d−1
{|cj,n|} ≤ (1 +H(α))n+1−d ,

and each rational number cj,n can be expressed as a fraction having a denomi-
nator equal to cn+1−d

d .
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2. Suppose β1, β2, . . . , βL are elements of Q(θ), where θ is an algebraic integer
of degree d and of height H(θ). If for each l = 1, 2, . . . , L,

βl = rl1 + rl2θ + · · ·+ rldθ
d−1 ,

where each rlj is a rational number satisfying |rlj | ≤ Bl for some bound Bl,
then

β1β2 · · ·βL = r1 + r2θ + · · ·+ rdθ
d−1 ,

with rational coefficients rj satisfying

max
1≤j≤d

{|rj |} ≤ dLB1B2 · · ·BL
(

2H(θ)
)dL

Moreover, if den(βl) denotes the least common multiple of the denominators
of the rational coefficients rl1, rl2, . . . , rld, then each rational number rj has a
denominator of the form

den(β1)den(β2) · · · den(βL) .

3. Convince yourself that the details in the proof of the zeros estimate concern-
ing order of growth are correct.

4. Using the nonzero value from the order of growth estimate to obtain the
final contradiction in Schneider’s proof.

5. In Schneider’s proof assume that α and β are real numbers. Apply the
last proposition of this chapter to show that there exists a constant c∗ so that
c∗m satisfies: There exists a pair a∗, b∗, with max{a∗, b∗} = m∗, such that
F (a∗ + b∗β) 6= 0 but for all a, b with 1 ≤ a, b < c∗m,F (a+ bβ) = 0.
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